match_face/scanf_face.py

113 lines
3.0 KiB
Python

import cv2
import face_recognition
import os
import sqlite3
import numpy as np
# 初始化摄像头
cap = cv2.VideoCapture(0)
photo_count = 0
max_photos = 10
captured_images = []
# 创建目录以保存照片
save_path = "captured_faces"
os.makedirs(save_path, exist_ok=True)
while photo_count < max_photos:
ret, frame = cap.read()
if not ret:
break
# 将图像转换为RGB颜色
rgb_frame = frame[:, :, ::-1]
# 检测人脸
face_locations = face_recognition.face_locations(rgb_frame)
for face_location in face_locations:
top, right, bottom, left = face_location
face_image = frame[top:bottom, left:right]
# 保存抓拍的照片
image_path = os.path.join(save_path, f"face_{photo_count + 1}.jpg")
cv2.imwrite(image_path, face_image)
captured_images.append(image_path)
photo_count += 1
if photo_count >= max_photos:
break
# 显示结果
cv2.imshow("Capturing Faces", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
print(f"Captured {photo_count} images.")
def create_face_database(db_name="face_database.db"):
conn = sqlite3.connect(db_name)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS faces
(id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
encoding BLOB NOT NULL)''')
conn.commit()
conn.close()
def add_face_to_database(name, image_path, db_name="face_database.db"):
conn = sqlite3.connect(db_name)
c = conn.cursor()
# 加载图片并生成编码
image = face_recognition.load_image_file(image_path)
face_encodings = face_recognition.face_encodings(image)
if face_encodings:
face_encoding = face_encodings[0]
# 将编码转换为可以存储的格式
encoding_blob = np.array(face_encoding).tobytes()
c.execute("INSERT INTO faces (name, encoding) VALUES (?, ?)",
(name, encoding_blob))
conn.commit()
conn.close()
def match_faces(image_path, db_name="face_database.db"):
conn = sqlite3.connect(db_name)
c = conn.cursor()
# 加载待匹配图片并生成编码
unknown_image = face_recognition.load_image_file(image_path)
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]
c.execute("SELECT name, encoding FROM faces")
matches = []
for row in c.fetchall():
name, encoding_blob = row
known_encoding = np.frombuffer(encoding_blob, dtype=np.float64)
match = face_recognition.compare_faces([known_encoding], unknown_encoding)
matches.append((name, match))
conn.close()
return matches
# 创建人脸数据库
create_face_database()
# 向数据库中添加人脸
add_face_to_database("Alice", "captured_faces/face_1.jpg")
# 匹配人脸
for captured_image in captured_images:
matches = match_faces(captured_image)
for name, match in matches:
if match[0]:
print(f"Match found: {name} in image {captured_image}")