2024-07-14 11:16:59 +08:00
|
|
|
|
def sieve_of_eratosthenes(n):
|
|
|
|
|
primes = [True] * (n + 1) # 创建一个布尔列表,初始时所有元素设为True
|
|
|
|
|
p = 2
|
|
|
|
|
while p * p <= n:
|
|
|
|
|
# 如果 primes[p] 未被标记为 False, 则是一个质数
|
|
|
|
|
if primes[p]:
|
|
|
|
|
# 更新所有 p 的倍数,从 p*p 开始标记为 False
|
|
|
|
|
for i in range(p * p, n + 1, p):
|
|
|
|
|
primes[i] = False
|
2024-07-16 09:11:48 +08:00
|
|
|
|
p+=1
|
|
|
|
|
while primes[p]==0:
|
|
|
|
|
p+=1
|
2024-07-14 11:16:59 +08:00
|
|
|
|
|
|
|
|
|
# 收集所有质数
|
|
|
|
|
prime_numbers = [p for p in range(2, n + 1) if primes[p]]
|
|
|
|
|
return prime_numbers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 测试算法
|
2024-07-16 09:11:48 +08:00
|
|
|
|
n = 10000
|
2024-07-14 11:16:59 +08:00
|
|
|
|
print(f"小于等于 {n} 的所有质数: {sieve_of_eratosthenes(n)}")
|